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There are five proklems (I~V). For the problem I, read carefully the
explanation in the first page. Each of problems II~V consists of basic and
advanced problems ([A], [B]). Answer both of them. All the problems are
given first in Japanese and then in English. The contents of the problems
are the same.
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Use one sheet of answer paper separately for each problem. Write the
problem number at the top of the sheets.
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Draft sheets will not be marked.
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Answer five out of the following ten questions. Write the question numbers

on the answer sheet clearly. The imaginary unit is represented by .

QL.

Consider the curve y = z2 in the zy-plane. Rotate the curve counter-
clockwise by 30 degrees about the origin in the zy-plane. Write down

. the equation of the curve after the rotation.

Q2.

Q3.

Q4.

Q5.

as.

1 a+b 0
Consider a matrix A= |0 3b 0 | . a, b are real numbers, and
0 0 ab

a > 0 and b < 0. Find the a and b such that A2 = I. Note that I is the

identity matrix.

o = O

1 1
Find all eigenvalues of a matrix A= | 0 0
1 1

Find the solution of the following differential equation,

d’y(z) . dy(z)

-1 25 —
dz? ¢ dz Sl
0
that satisfies the boundary conditions, y(0) = 0 and dg;_(w) =510
Find the general solution for the following differential equation.
%;i) + 4y(z) = sinz

Find the complex number z that satisfies the following equation.

exp(z) =104

(Continued on the next page)




Q7.

Q8.

Q9.

Find the function F(w) that is the Fourier transform of the function
f(z) = exp(—alz|), where a is a real number and greater than zero.

: 1 [ :
Here, the Fourier transform is defined as F(w) = 7 / f(z)e™"dz.
Let ¥ = (z,y,2) be a position vector and r = /2% 4+ y2 + 22. Here,
r # 0. Calculate V- (13 + 15)
o R
00 2 h
To find the solution of the integral / -w;_ﬁdx, firstly consider the

2
integral I = / 250 along the closed curve C in Figure 1. Here, 2
czt+1

is complex number and z = Re(z). Find the singular points within C
and their residues (note that r is a sufficiently large value ). Then, using
the results of the residues and the condition that the integral along the
arc of C become zero when r — o0, find the solution of the integral

00 2
/ f dz.
CaoX® 1

(Continued on the next page)




s
‘Q10. Find the solution of the integral / S%E-dm. Consider the closed curve
0

C in Figure 2. Here, z is complex number and z = Re(z). The closed
curve C consists of the following four parts: a line from —r to —¢, an
arc from —e to ¢, a line from € to r, and an arc from r to —r. Using the
result of the integral along the closed curve C, find the solution of the

s
integral / il
0 i
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II
[A]

The moment of inertia I of a rigid body is determined by integrating the product of the
density p ateach volume element dxdydz and the square of the distance r from the axis of

rotation over the entire rigid body.
r= frzp dxdydz

Answer the following questions.

Q1: A thin uniform rod of length L and mass M rotates around an axis perpendicular to the
rod at one end. Find the moment of inertia of this rod about the axis of rotation.

Q2: A uniform disk with mass M and radius R is rotating about an axis perpendicular to the
disk and through its center with angular velocity . Find the moment of inertia of this
disk about the axis of rotation and calculate its kinetic energy.

Q3: A thin uniform rod of length L and mass M is standing vertically with one end fixed.
When the rod begins to fall gently, find the angular acceleration of the rod at the position
where it makes an angle  with the vertical axis. Let I, be the moment of inertia about
an axis perpendicular to the rod at one end, and let g be the magnitude of the

gravitational acceleration.

(Continued on the next page)




[B]

As shown in Fig. 1, consider two point masses, each of mass m, suspended by strings of
negligible mass and length [ and separated by a horizontal distance a, connected by a
spring with negligible mass, natural length a, and spring constant K. We examine the motion
when they undergo small oscillations in the direction of the spring. Using the angles 6; and
6,, which the strings make with the vertical axis, as generalized coordinates, answer the
following questions. Let the magnitude of the gravitational acceleration be g, and for small
angles 6, approximate sinf ~ 8, cosf ~1— %92. Also, the first and second time derivatives

of a variable X are denoted as X and X, respectively.

< a >

m K m
point mass I point mass 2

Figure 1

Q1: The Lagrangian for this coupled pendulum system is L.

£=[@](6:" +6,") +[B6:* + 6,°) +[ )0 — 62)
Choose the coefficients (4), (B) and (C) from the following.

l [ ml? 12 KI2 KI?
ng ,—ng ,m2 ,—m—z-,T,—-T,mgl, _mgl,mi2, —mi?, K2, —KI2

K . . . .
Q2: Let w,= |2 and wg= |-~ . Write the equations of motion, using
: g l m

61,05,64, 05,61, 6,, wg, w if necessary.

Q3: Introduce the normal coordinates @) = %(91 +6,), 0@ = \%(91 —6,), and rewrite
the equations of motion, using 8™, 0@, 8™, 6@, MW, 8P, w,, wy if necessary.
Q4: Find the natural angular frequencies @® > 0 and w® >0 corresponding to ®® and

0@, Also, explain the motion of the two point masses in the natural vibration modes.

(Continued on the next page)




Next, as shown in Fig. 2, a periodic external force F,coswt was applied horizontally to point
mass 2, causing it to undergo small oscillations. In this situation, point mass 1 and point mass
2 experience resistive forces proportional to their velocities v; and v,, with magnitudes

myv, and m yv,, respectively.

< a 3

[
1
¥
1
1
1
1
1
T
1
]
5
]
[
1

F=F, cos wt

m K m
pointmass 1 point mass 2
Figure 2

Q5: Write the equations of motion in term of 8, and 8,, using m,1,8,,8,,6;,6,,084,6,, »,

Fy, wg, wg,y if necessary.
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Answer the following questions [A] and [B]. Let i = j- where h is the Planck constant.
[A]

Q1. When the position operator Z and momentum operator p in one dimensional system
are given, prove the commutation relation [p, 3] = —3ih2?. Note that the operators Z and

P satisfy the commutation relation [Z, p| = ih.

A

Q2. Calculate (a) and (b) below for the angular momentum operator L=(l;1,L,).

(a) [f’w’ i’y]
(0) (L, [Ly, L] + [Ly, [Lz, Lol + (L, [ L, L]

Q3. For the angular momentum operator L= (f/z,fly, Ez), an eigenstate of 1? and I
|, m), satisfies izll,m) = R2(l + 1)|I,m) and L,|l,m) = hm|l,m). Answer the expectation
value of £2 + L2 for the state |3, —2).

(Continued on the next page)




[B]

Consider the motion of a particle in one dimensional system with the coordinate x. Consider
the particle in a bound state of the delta function potential V(z) = —V;0(z), where the
particle mass is m, its energy is E(< 0), and V5 > 0. Note that §(z) is the Dirac delta
function.

Q1. Write a time-independent Schrédinger equation in this system. Also, state the condition
that the wave function in a bound state should satisfy at infinity.

Q2. Consider to solve the Schrédinger equation in Q1 for two separate regions: z < 0 and
z > 0. Write the solutions in each region using m, F, and /. One can use arbitrary constants
for the amplitude of each wave function.

Q3. By integrating the Schrodinger equation in Q1 over small interval [—¢, €] and considering
the limit of € — 0, derive the following equation with the wave function ¥(z).

@) @) _ _%%w(m (1)

oz z—+0 0T lz——0

Q4. Requiring Eq. (1) as a condition, write a normalized wave function for the bound state
and the energy F using m, Vp, and A.

Q5. When the position operator # and the momentum operator p are given, calculate the
variance of the particle position, 02 = (£%)—(£)?, and that of the momentum, o2 = (#*)—(p)?,
respectively, and then calculate |o,||o,|. Note that ) denotes an expectation value for the
bound state. If needed, use the following relations for the sign function sgn(z).

) i)

dz
(@) = ol (s40)
-1 (z<0)
sgn(z) = <0 (z=0)
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Answer the following questions. Let a permittivity of vacuum be & and a

permeability of vacuum be .

[A]

As shown in Fig. 1, a closed circuit with a capacitor having a pair of
sufficiently large parallel electrode plates (electrode plate area S, electrode
plate spacing d, capacitance ) and a sufficiently long hollow solenoid (the
number of turns of wire per unit length n, cross-sectional area S;, length [,
self-inductance L) is placed in vacuum. The capacitor and the solenoid are

connected in series.

[ Ja-]

L% I ) w Ce—

Fig.1 Fig.2

Q1. Write the capacitance Cof the capacitor in this circuit using S, d;

and &,.

Q2. Write the self-inductance L of the solenoid in this circuit using n, S,

[, and 1.

When a charge is added to the electrode plates of the capacitor in the circuit,

acurrent I(t), that periodically dépends on the time flows through the circuit.

Q3. Write the frequency f of the current I(t) using C and L. Here the
impedance of the conducting wire of the circuit is negligible.

(Continued on the next page)




Q4. As shown in Fig. 2. each electrode plate of the capacitor in Fig.11s circular
with radius R, and the conducting wire of the circuit is connected to its
center. Express the magnitude of the magnetic flux density B at the point
Pin Fig. 2 using r, I(t), and w, where the point Pis a distance r away
from the axis through the center of the capacitor's plate, and r is

sufficiently greater than R.

(Continued on the next page)




[B]

As shown in Fig. 3, a sufficiently long coaxial transmission line, consisting
of a cylindrical inner conductor and a cylindrical outer conductor, is placed in
vacuum along the z-axis. The plane perpendicular to the z-axis is the xy-
plane and resistance of inner and outer conductors is negligible. The radius

of the inner conducting cylinder is a. Answer the following questions.

A y

/

/

@ > x

Hollow section 7

Inner conducting
cylinder

Cylindrical outer conductor

Fig.3

Q1. The current /is flowing in the positive direction of the z-axis on the
surface of the inner conducting cylinder. Express the maximum value of
the magnitude of the magnetic flux density Bin the hollow section of this

transmission line using /, a, and .

Q2. A charge gper unit length on the surface of the inner conductor is located.
Write the maximum magnitude of the electric field £in the hollow section

of this transmission line using g, a, and &,.

(Continued on the next page)




Next, consider the case where an electromagnetic wave of frequency f
propagates in the hollow section of this transmission line in the positive
direction of the z-axis. The electric field and magnetic flux density of this
electromagnetic wave are perpendicular to the z-axis direction. The electric
field and the magnetic flux density are denoted by E. and B, respectively.
Using the wavenumber k, E.and B, can be written as
E =E,(x y)exp(ikz — i2nft) and B =B, (x,y)exp(ikz — i2nft) where i is

imaginary unit.

Q3. E.and B, satisfy the following two equations.
VxE,=iaB,. VxB,=—ipE,
Find a and B. '

From the next problem onward, the following equation can be used if

-

necessary. It is valid for any vector F,
Vx (¥ x F) = V(% F) - v2F

Q4. E.and B, satisfy the following two equations.
(V2 + 4n?y)E. = 0. (V? +4n2y)B.=0
Express y using f, &, and .

Q5. To show that E. and B . are vectors with neither rotation nor
divergence, consider the operator V. defined by the following equation

in Cartesian coordinates

= o @
V.=(Z.2,0).
Show that the following four equations using this V, are valid.
VL-EL= 0. Vl-§L= 0. ﬁLXEL= 0. ﬁLX EJ_:O
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[A]

Answer the following questions.

Q1.

Q2.

Q3.

Consider a system consisting of two subsystems A and B. Suppose the interaction

_between the subsystems is sufficiently weak and the energy of the whole system is given

by the sum of those of the subsystems. Let F4 and Fip be the Helmholtz free energy of
the subsystems A and B, respectively. Express the Helmholtz free energy of the whole
system using F4 and Fp.

Let = be the grand partition function of the system following a grand canonical ensem-
ble with the temperature T' and chemical potential . Letting kg be the Boltzmann
constant, we define the inverse temperature as 8 = (kgT')~'. Express the expectation
value of the particle number (N) of this system using 3, u, and E.

Select two correct statements from the following.

(a) Pressure and temperature are intensive, and chemical potential is extensive.

(b) When the particle number occupying each energy level is sufficiently small, both
Bose and Fermi distributions are well described by the Boltzmann distribution.

(c) If the specific heat at constant volume is positive, the Helmholtz free energy as a
function of temperature is convex downward.

(d) In bosonic systems, the Bose-Einstein condensation can take place even when there

is no interaction between bosons.

(Continued on the next page)




[B]

Let kg be the Boltzmann constant and h be the Planck constant. We also use A = h/2m
in the following.

Consider a system consisting of N three-dimensional harmonic oscillators. The system is
assumed to be in equilibrium with the temperature 7". Treating these harmonic oscillators
classically, we regard the system as a classical system consisting of N three-dimensional

harmonic oscillators. The Hamiltonian is given by

N —
' rig] 2om 2 e )l

where 5; and 7; represent the momentum and coordinate of the i-th harmonic oscillator with
the mass m and angular frequency w. Answer the following Q1 and Q2.

Q1. We define the partition function Z by
Z=/_“/df'1"'dFNdﬁl'“dﬁN o—H/knT

h3N

5 k‘BT 3N
Z‘(?J) :

You can use the following formula, if necessary.

o0
/ dz e~ = \/g (a>0).

Q2. Find the entropy and the heat capacity.

Prove

(Continued on the next page)




In the following, we treat these harmonic oscillators quantum mechanically. The system is
then regarded as a quantum system consisting of N three-dimensional harmonic oscillators.
The energy eigenvalue of each harmonic oscillator is given by

3

with a three-dimensional quantum number 7 = (ns, ny, n,) where ng, n,, and n, are integers
greater than or equal to zero. We specify the quantum state of the system by assigning the
quantum number 7 to each harmonic oscillator. Then the energy of the system is given by
the sum of the energies of these harmonic oscillators. Answer the following questions.

Q3. Find the partition function.
Q4. Find the entropy and the heat capacity.

Q5. Consider the high-temperature limit kg7 > hw. Show that the entropy of the quantum
system obtained in Q4 agrees with that of the classical system obtained in Q2. Similarly,
show that the heat capacity of the quantum system obtained in Q4 agrees with that of
the classical system obtained in Q2.

Q6. The third law of thermodynamics states that the entropy of a system approaches zero
as the temperature approaches absolute zero. Show whether the entropy of the classical
system obtained in Q2 is consistent with the third law of thermodynamics. Similarly,
show whether the entropy of the quantum system obtained in Q4 is consistent with the
third law of thermodynamics.







