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There are five problems (I~V). For the problem I, read carefully the
explanation in the first page. Each of problems II~V consists of basic
and advanced problems ([Al, [B]). Answer both of them. All the problems
are given first in Japanese, and then in English. The contents of the

problems are the same.
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Lo
Use one sheet of answer paper separately for each problem. Write the

problem number at the top of the sheets.
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Answer five out of the following ten questions. Begin by writing the question
numbers on the answer sheet clearly. Here, 7 is the imaginary unit.

Q1 Evaluate the following integral.

/°° dx
L+

i ) (an) ) mn'm
S S )
TN N

m=1

Here N,n,n’ are integers satisfying 0 < N,0 < n,n’ < N.

') : 2
[ () ’
— 0o X

The integral on the left hand side is equal to

/ I (sinz)2 .
C z

Here C is a contour which deviates from the real axis in a neighbor-
hood of z = 0 as depicted in the figure below. Since the integrand is
holomorphic in a neighborhood of z = 0, the integral along C is equal
to the one along the real axis.

Q2 Evaluate

Q3 Let us prove the formula

~—

Imz

Rez

Prove the formula (1) by using

sin 2\ 2 1 e e % 2
/Cdz< ) _—4[/005422 +/Cdz S —/CdzZQ],

and evaluating each term on the right hand side.

(Continued on the next page)



Q4 Let f(x) be a differentiable function defined for —oo < x < oo which
satisfies
lim f(z)=0.

r—r+o00
Evaluate the limit

(Sin(tx))2 |

tlLHl/ dx f(z)

tx

Here you can use the formula (1) in Q3, if necessary.
Q5 Let fT(F) be a vector field in the three dimensional space. Express
V x (V x A),
in terms of (V- V)4 and V(V - A).

Q6 Three dimensional cartesian coordinates x, y, z can be expressed in terms
of the polar coordinates r, 6, ¢ as

x rsin 6 cos ¢
Y = rsin 6 sin ¢
z r cosf

Let €., €, €, be vectors defined by

sin 6 cos ¢ cos B cos @ —sin¢
€, = | sinfsing , €g=| cosfsing |, €= cos ¢
cos 0 —sin6 0

Show the following formula holds.

of
oz

af 10f 1 of
ﬁ :7—» - -
gi{ 8rer+ T + Tsin98¢e¢
8z

Q7 Let a,b be real numbers none of which are 0. Let us consider a surface
in the three dimensional space defined by the formula

1:2 y2 2
St atn =1

Find a vector perpendicular to this surface at (0, %, %) on it.

(Continued on the next page)



Q8 Let I,J be
—74(15 .
i 10 g Acos.9 e "?sind '
01 e?sinf —cosf
Evaluate exp(%aJ ) and express it as a linear combination of I and J.

Q9 Let T,V be N x N real symmetric matrices. Suppose that there exist N
dimensional real vectors v, v" and real numbers A\, A" (X # X') satisfying

M\ —V)T = 0

NT -V)v' =
Show that
v-Tv' =0
holds.
Q10 Let

_ [ a(z) b(x)
Ale) = ( (z) d(z)
be a 2 x 2 matrix whose elements are differentiable functions of z.

Assume that det A(z) # 0 and A~'(z) denotes the inverse matrix of
A(z). Show that

; B 1y dA(D)
- det A(z) = det A(z)Tr [A (z) dx ]

holds.
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Q2.

Q3.

B]

. (a) Consider a rigid body of mass M. Let I be the moment of inertia about

an axis through the center of gravity. Find the moment of inertia about
an axis parallel to that axis and separated by /.

(b) Consider a uniform and thin disk of radius @ and mass M. The moment
of inertia about an axis perpendicular to the disk and through the center
of the disk is Ma?/2. Find the moment of inertia about an axis parallel to
the disk and through the center of the disk.

Consider a point mass moving under a central force. The center of force is

located at the origin O. Let 7 be the position of the point mass measured

from O, and p be the momentum. Show that the angular momentum 7 x p'is
conserved.

Suppose that force F at position 7 satisfies the following equation :
V x F(7) = 0.

V is the differential operator, nabla. Answer what the force F above is called.

Answer whether or not the friction force is classified into E.

In the following questions, X and X denote the first and second derivatives of a

variable X with respect to time, respectively.

Consider a point mass of mass m moving under the gravitational force. Let the point

mass move on a plane, and the plane be xy plane. And let (z,y) be the coordinate

of the point mass at some instant. The direction of the gravitational acceleration

(magnitude g) is the negative direction of y axis. The potential energy is zero at

y = 0, and any effects due to air resistance can be ignored.

Q1. Write down the Lagrangian Ly of the point mass.

(Continued on the next page)



Next consider a ring of radius a, which is fixed on the x-y plane with the center of
the ring located at the origin O, as shown in fig.1. Suppose that a point mass of mass
m is placed at the top of the ring. Suppose also that the point mass then slides on the
ring, and leaves the surface of the ring at a certain height. The friction between the

point mass and the surface of the ring can be ignored. Answer the following question.

Q2. Let (z,y) be the coordinate of the point mass during sliding. Write down an

equation expressing the mechanical energy conservation.

The coordinate (z,y) of the point mass during sliding must satisfy the following

condition:
2 + y2 =a’. (1)

To take account of eq.(1), let us introduce a new Lagrangian £ by using Lo (Q1):
L=Lo+Aa"+y* —a?), (2)
where )\ is Lagrange’s undetermined multiplier. Answer the following questions.

Q3. Derive the following equations of motion from eq.(2).

mi = 2\x (3)
my +mg = 2\y (4)

Q4. Use the result of Q2, eq.(1), eq.(3), and eq.(4) to find A as a function of y. The

following equation derived from eq.(1) can be used:
.9 . .9 .
z°+xr+y  +yy=0.
Q5. Find the y coordinate at which the point mass leaves the surface of the ring.

(Continued on the next page)
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Q1. Let AT be a Hermitian conjugate *A* of a complex square matrix A, where  and *
represent transpose and complex conjugate, respectively. When AT = —A | the
matrix A is called anti-Hermitian matrix. Prove that eigenvalues of the anti-
Hermitian matrix are 0 or pure imaginary.

z2 :
Q2. A gaussian wave packet ¥(z) is given as ¥(z) = ——e 22 7" Let a and k be a

(w2
positive real number and a real number, respectively. Calculate the expectation

value (p) of the momentum operator p for the wave packet. Let p be p = %a%' If

322
necessary, use the following formula of Gaussian integral ffooo e 2dxr = +/7a.

Q3. The expectation value of kinetic energy of an electron is £ = 100 eV, and its
fluctuation is AE = 0.01 eV. Then, calculate uncertainty Ap of the kinetic
momentum p of the electron. In addition, calculate uncertainty Az of the position
x of the electron. Heisenberg uncertainty principle is AxAp > % If necessary, use
electron mass m = 9.11 x 1073 kg, 1 eV=1.60 x 1072 J (=kg-m?*.s7?),
fi=1.05x 1073 Js, and v/29 ~ 5.4.

(Continued on the next page)
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Consider an isolated particle at rest with spin quantum number s=1/2. Suppose x, y, z components of

the particle spin operators are given by

IS h A h A h
Sx :EO'X, Sy ZEO'y, Sz ZEO'Z,

where oy, 0y, 0, are the Pauli matrices as given by
001 0 =iy (1 0
a"_(1 0)’ Uy_(i 0)’ C'Z_(o —1)'

We suppose the identity matrix is givenby [ = L0 , and the state of this particle at time ¢ ®)
0 1 P

is given by

ao(t)

) BO1=@®, ao).

6@) = (

using aq(t) and a,(t). We suppose a,(0) = g, a;(0) =— g att=0.

Q1. Show that e = [cos@ + io, sin@ by using 0,2 =1.
Q2. Obtain expectation values of S, Sy, and S, attime t = 0.

A magnetic field parallel to the z-axis is applied at t = 0. The Hamiltonian of the system is given by
a, = —%SZBO = —%hwaz,
where B, is the z-component of the magnetic field, pg is the Bohr magneton, g is the g-factor.
Weset w = %BO and assume w > 0. In the followings, use w if necessary.
Q3. Derive the differential equations for ay(t) and a,(t) from the time-dependent Schrodinger

equation

in 82 = Ay (o).

Q4. Solve the above differential equations, imposing the initial conditions.
Q5. Obtain expectation values of §, and $, attime ¢; = % and obtain (¢ (t;)|¢p(0)).

Next, after removing the magnetic field parallel to the z-axis at time t = t;, a magnetic field parallel
to the y-axis is applied at time t > t;. The Hamiltonian of the system is given by

—~ Jus a 1

H, = —TBSyBO = —-hwoy,
where B, is the y-component of the magnetic field.

Q6. Obtain expectation values of S, and $, attime t, =¢; + % and obtain (¢ (t;)|$(0)).
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For each of the following questions, choose graphs from the list of options
(1)—(8) given in the next page, and show appropriate ones which are
specified in the questions. The vertical-axis values in the graphs are

always zero at r/R = oo, and are normalized to unity at r/R = 1.

Q1. A graph that plots electric-field strength as a function of the dis-
tance r from the center in each of the following two cases.
(a) A sphere with a radius R which is positively and uniformly
charged in vacuum.
(b) A sphere surface shell with a radius R which is positively and

uniformly charged in vacuum.

Q2. A graph that plots electric potential as a function of the distance
r from the center in each of the three cases below. The potentials
are always assumed to be zero at r/R = oc.

(a) The sphere in Q1 (a).
(b) The sphere surface shell in Q1 (b).

(c) A positive point charge placed at » = 0 in vacuum.

Q3. A graph that plots electric potential as a function of the distance
r from the center of a conductive sphere with a radius R which
is positively-charged and placed in vacuum. The potential is as-

sumed to be zero at r/R = oc.

Q4. A graph that plots magnetic-flux-density strength around a non-
magnetic cylindrical conducting wire with a radius R as a function
of the distance r from the central axis. We assume that there is
uniform current along the axis inside the wire. The wire is placed

in vacuum, and has infinite length.

(Continued on the next page)



List of options
1

r/R 1 r/R2 ’

(Continued on the next page)
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We consider a small circular circuit S of a conducting wire with mass
m and finite resistance R. It has an area of A. This circuit is fixed
at one edge of a thin insulating rod with length ¢ and negligible mass.
We regard it as a pendulum without friction or air resistance placed
in the space of uniform magnetic-flux density B with vertical upward
direction. The pivot point of the pendulum is the other edge O of the
rod, which is opposite from S. The normal direction of the circular circuit
S is always parallel to the direction of the velocity of S. The size of S is
negligibly small as compared to the length of the rod. The magnitude

of the acceleration of gravity is g. Answer the following questions.

0

Right-side view of S

(= mm e N

Circular circuit St j

Figure

Q1. Asshown in the figure, we define the angle between the pendulum
and the vertical axis as 6(t) at time ¢. Find the magnetic flux
penetrating the circuit S at the time £. We assume the magnetic
flux to be positive when it is penetrating from the left side of S to

the right in the figure.
(Continued on the next page)



Q2.

Q3.

Q4.

Q5.

Express the electromotive force generated by the temporal change
of the magnetic flux penetrating the circuit S by using the angular
velocity df/dt. We assume the electromotive force to be positive
when it is inducing current along the direction of the arrow de-
picted in the right-side view of the circuit S shown in the dashed
square in the figure. The range of the motion of the pendulum is

very small (|6] < 1), and we can use the approximation cos 6 ~ 1.

Express the electric power P; which is done by the current induced
in the circuit by the electromotive force obtained in Q2 by using

the angular velocity df/dt.

Write the equation of motion which describes the dynamics of
6(t). The interaction between the induced current in S and the
magnetic field gives rise to a net torque in the pendulum. When
we define the force which generates this torque to be F', its power

P, can be expressed as

df
P, =F/{—
2 dt Y
and we can find F' from the relation P; = —F,. We can also use

the approximation sin § ~ 6 since |§| < 1 holds.

Write the expression which describes the condition for the peri-
odic motion (damped oscillation) of the pendulum from an initial
position # # 0. In addition, write what the dynamical energy of

the pendulum lost in this damped oscillation becomes altered to.
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[A]

Answer the following questions.
The Helmbholtz free energy, F, of volume ¥ at Temperature 7 is given by
F = —kgTlogZ(T,V),
where Z(T, V) is the partition function and kg is the Boltzmann constant. Write down the following quantities

Q1, Q2 and Q3 using Z(T,V). The answer can include partial derivatives such as 0 / d T etc.

Ql. Entropy, S.
Q2 Pressure, P.
Q3 Gibbs free energy, G.

(Continued on the next page)



[B]

Consider a mixture of two kinds of ideal gases consisting of independent molecules. Answer the following

questions.

For N molecules each with mass m in a box of volume } at temperature 7, show that the partition function
Z is given by
7 = ﬂ (ankBT)%
N! h? ’

where kg is the Boltzmann constant, 4 is the Plank constant, and N is sufficiently large value.

In the following, there are two kinds of monoatomic ideal gases with volume ¥ and V>. The masses of
molecules of the two gases are m; and m, and number of their molecules are N; and N, respectively. N; and

N> are sufficiently large values. The temperature of the two gases are 7.

Q1 Show the partition functions Z; and Z; for each of two kinds of gases. The two gases with volume ¥
and V> are mixed. A total volume is V=V +V,. Show that the partition function, Zi+,, of the mixture.

Q2 Show that the entropy of S for N1 molecules with mass m in a box of volume V] is given by

2nmmq kg
h2

S = 2Nykp + NikplogVy +2Nikp logT + Ny kg log — klogNy!.

Q3 Write down the difference of entropy, AS, between a sum of each two kinds of gas and the mixture.

Q4 Explain the process of the mixture is irreversible based on the AS. Write down AS in the case of
Vi=V,=V/2 and N1=N,=N/2.

Q5 Show the no difference of the entropy by the mixture of two identical gases. You can use the
following Stirling’s formula without proof: logN! = N logN — N.

Q6 Consider calculation of the difference of entropy, A4S, for the present mixture by classical
thermodynamics. To find the entropy difference between any two states of a system, the process must
be replaced for a reversible path between the initial and final states. Write down the replaced
reversible path. Write down A4S by classical thermodynamics using ideal gas constant, R, and

Avogadro number, Na.



