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There are five problems (I~V). For the problem I, read carefully the
explanation in the first page. Each of problems II~V consists of basic
and advanced problems ([Al, [B]). Answer both of them. All the problems
are given first in Japanese, and then in English. The contents of the

problems are the same.

. ENTROMBIC S & B OMEHRE WX, £, MEESZREY

£
Use one sheet of answer paper separately for each problem. Write the

problem number at the top of the sheets.
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Draft sheets will not be marked.
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Answer five out of the following ten questions choosing at least two questions in
each of the groups [A] and [B]. Write the question number clearly on the answer sheet.

The imaginary unit is represented by <.
[A]

Q1. Calculate the determinant of the following matrix.

14+a 1 1
1 1+5b 1
1 1 1+c

Q2. Find all the eigenvalues and the eigenvectors of the following matrix where a

(5 e)

Q3. The complex number /7 — 1 is expressed as /¢ — 1 = a+ bi using real numbers

a and b. Find the values of a and b.

and b are real numbers.

Q4. Consider the upper-half of the complex plane for complex variable z, Imz > 0.

Describe the region in the complex plane occupied by the complex variable w,

z—1
z+1°

given the mapping w =

Q5. Evaluate the integral

where C' is a contour counter-clockwise along the circle |z| = 1.

Q6. Find the general solution for the following differential equation.
dy 2

2y Zy=8
dac+my v
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Qr.

Q8.

Q9.

Q10.

Let 7 = (z,y,2) be a position vector in three-dimensional space and @ =

(az,ay,a,) be the position vector of a fixed point. Show that the following

—

relation holds at every point 7 except at 7= a.

\V& 414 =0
|7 — d|

= o 0 0

V‘(%a—y’%)

Let ff(r) be a vector field that depends on r, the magnitude of the position

V is defined by

vector 7 in three-dimensional space. Show that the following relation is true.

-

V-[/f(r)xf] ~0

Show that the following Schwarz inequality holds,

{ / bf(fv)g(x)dxF < / ’ fla)de / (@),

for the integrals involving two real-valued functions of f(x) and g(z) over the

interval [a,b]. Find the condition for equality.

—

Define the Fourier transform F'(k) of a function f(7) that depends on the vector

7= (z,y, z) in three-dimensional space through

F(E)z/_ida:/_idy/_idz ei’;'Ff(f“).

Show that F'(k) depends only on k = |k|, the magnitude of the vector k, if the

function f(7) depends only on r = ||, the magnitude of the vector 7.
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[A]

Q1.

Q2.

Q3.

The gravitational force on a point mass particle with mass m at position 7 = (z, y, 2)
is given by the following integral equation :

= Gmp(q) ™—q
F(r :_/d3 — — )
" T g 7

where p(7) is the density distribution of the ambient material and G is the grav-

itational constant and ¢ is position for the integral. Write down the equivalent
differential form of the Newton’s law of gravitation (differential equation with F
and p) using the following differential operator, nabla :

V= oy

y 0z
The density distribution p(7) results in a gravitational force F on a point mass
particle with mass m. Consider a volume V in 3D-space, bounded by surface S.
Write down the relation (integral formula of Newton’s law of gravitation) between
the total mass within the volume V' and the force on the closed surface S.

Within a vacuum, a region devoid of matter, there exist no points of stable equili-
blium in the presence of Newton’s gravitational forces. Explain this fact based on
Newton’s gravitational law. Note that any “stable equilibrium position” in the pres-
ence of Newton’s gravitational force, the total force from the surrounding material
must be zero. At a slightly displaced position from the “stable equilibrium position”,
a restoring force must act in the direction of the “stable equilibrium position”.

(Continued on the next page)
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B]

Inside a sphere with radius R and uniform density p, a point mass of mass m can go
through a small tunnel-like hole as shown in Fig.1. The tunnel is defined by smoothly
connecting any two different points on the surface of the sphere. The force acting on the
point mass is only the gravitational force from the sphere and the motion of the point
mass is restricted to the path of the tunnel. Any friction between the point mass and the
tunnel can be ignored. We may also ignore the change in the gravity and mass of the
sphere caused by the hole. The mass of the sphere is large enough compared to the point
mass, so that we can assume the sphere does not move. Answer the following questions
using the gravitational constant G.

Q1. Write down the gravitational force on the point mass from the sphere using the
position 7 of the point mass, where the origin is the center of the sphere.

Q2. In order to understand the motion of the point mass within the tunnel, we first
consider the motion of the point mass just by the force in Q1. without considering
the path of the tunnel as shown in Fig.2. Assume that the point mass can move
freely within the sphere of radius R and that it does not leave the sphere.

(a) As the point mass moves, its kinetic energy and its angular momentum around
the origin are conserved. Write down the conservation equation for each quan-
tity.

(b) Show that the motion of the point mass is restricted to a plane.

—
o
SN—

Find a trajectory of the point mass within the sphere that goes through a point
on the surface of the sphere at ¥ = (z,y,2) = (R,0,0) and stays on the z — y
plane. z,y and z are Cartesian coordinates with the origin at the center of the
sphere. Express the trajectory in terms of the minimum distance A between
the origin and the trajectory.

Q3. Let us now turn to the motion of the point mass through the tunnel. The point
mass is placed at rest on one end of the tunnel (with zero initial velocity). The
point mass has gone through the tunnel and reached the other end of the tunnel.
In this process, the velocity at the other end is a constant and does not depend on
the path of the tunnel. Explain this fact with a conservation law that applies to
the motion of the point mass within the tunnel and find the velocity of the point
mass at the other end of the tunnel. Write down the conservation equation for the
relevant conserved quantity and explain the reason why the quantity is conserved
briefly.

Q4. Consider the case in which the tunnel is a straight line between two points on the
surface of the sphere as shown in Fig.3. After entering one end of the tunnel with
zero initial velocity, find the time needed for the point mass to reach the other end

(Continued on the next page)
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of the tunnel, where the minimum distance between the center of the sphere and

the tunnel is yyg.

Fig.1 Fig.2 Fig.3
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I11

Answer the folloing questions [A] and [B]. We set h = J- with the Planck constant .

BY

Consider two spin-1/2 particles whose spin operators are §; = (87,5Y,55) and 5, =

(5%,85,53). Answer the folloing questions.

Q1. Answer the maximal eigenvalue of the operator 8235 /h? and the degeneracy of
the state(s) realizing it.

Q2. Answer the maximal eigenvalue of the operator (5] +55)2/h2 and the degeneracy
of the state(s) realizing it.

Q3. Answer the maximal eigenvalue of the operator 5 - 55 /h% + (87 + §2)/h and the

degeneracy of the state(s) realizing it.

B

Consider the harmonic oscillator with mass m and frequency w, whose Hamiltonian

A~ ~2
is given by H = 2 + mTﬁfz (with the coordinate operator  and the momentum

operator p). We introduce the creation and annihilation operators a' and a by
at = L (vmwfv — 2L) ;oa= L (\/mwi + ZL)
V2h Vmw )’ V2R Vvmw )’
as well as the number operator 7 = a'G. Answer the following questions.
Q1. Show the Hamiltonian H is equal to H = hw(f + 1/2).
Q2. Let us define the vacuum state |¢g) by a|pg) = 0. Answer the wavefunction

of the vacuum state ¢g(x) = (x|po). The normalization of the wavefunction is

not necessary.

(Continued on the next page)
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Q3.

For an operator function f(n) of the number operator 7, f(n)a = af(n—1) and

f(n)a" = a' f(7+ 1) are hold. Explain succinctly why these relations are hold.

ae~ 7t and ernftafe—wH?

Ht

And using the relations, express en in a form of

c1a + coa’, where ¢1, ¢o are complex numbers without operators.

In the following, let the state |t) satisfy (acoshr + a'sinhr)[y) = 0, with a real

number r. We consider the state [¢(t)) that satisfies the Schrédinger equation
ih%hb(t» = H|(t)) with the initial state [1(0)) = 1) at ¢ = 0.

Q4.

Q5.

Q6.

Answer the wavefunction of the state 1(z) = (z]¢)). The normalization of the

wavefunction is not necessary.

We like find an operator A(t) characterized by A(t)[¢)(t)) = 0. Show that you

can choose A(t) = e~ 5t (4 coshr + af sinhr)e#t, and express A(¢) in a form

of ¢1a + c2a' where ¢, ca are complex numbers without operators.
Answer the wavefunction ¢(z,t = 5-) = (z|(t = 5)) at t = 5. The
normalization of the wavefunction is no necessary.
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IV.
A

Q1. There is a charged particle with a mass m and a charge ¢, which moves in a
circular motion with a velocity v in a uniform magnetic field.
(a) Find the magnitude of the magnetic flux density B.
(b) Let us define the z-axis along a magnetic flux density vector B , and apply a
uniform static electric field E. Find the time ¢ until the displacement of the
charged particle along the x-axis reaches X.
Q2. A voltage V = Vjsinwt is applied to a capacitor C, where w and t denote the
angular frequency and the time, respectively. Find the capacitive reactance Xc.
Q3. Consider a point charge ¢ in vacuum. Using the Gauss’s low, derive the electric
field at the distance r from the point charge. Here, a permittivity of vacuum is

denoted by eg.

(Continued on the next page)
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[B]

A spherical conductor of radius R is placed and its center is the origin O as shown

in Figure 1. The electric field outside the conductor is calculated with the method

of the image charges. A point charge +@) is placed at point A (x,y,z) = (¢,0,0),

where ¢ > R. The charge is placed in a vacuum, and the dielectric constant of the

vacuum is 9. Answer the following questions with @), R, ¢, and .

Q1.

Q2.

Y

A

Spherical conductor

Figure 1

Suppose that the spherical conductor is grounded. The potential at the con-
ductor surface is constant. In this case, a virtual charge ()g can be placed at
the point B (¢g,0,0) to give the same potential outside the conductor, instead
of placing the conductor. Find @) and /.

Next, the spherical conductor is not grounded and has no charge. In addition
to the point charge (g obtained in Q1, a point charge ()¢ can be placed at the
point C (¢, 0,0) to give the same potential outside the conductor, instead of
placing the conductor. Find Q¢ and /. Also, find the work required to carry
the point charge +(@) from point A to infinity on the z-axis positive direction.

(Continued on the next page)
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Now, suppose that a point charge —(@Q is placed at the point D (—¢, 0, 0) in addition
to the point charge +(@) at the point A as shown in Figure 2. The point P is at a
distance r from the origin O. The angle between the line OP and the z-axis is 6.

Y

y

’:, =,

E,

Q3. Find the r-component E, and the #-component Ey of the electric field E at

Q4.

Q5.

the point P. Suppose that the distance r is sufficiently larger than ¢, and the
second order and higher-order terms of (¢/r) can be neglected. In this case,
distance rap between AP and rpp between DP can be approximated as follows:

rap =1 —Lfcos, rpp>~r-+Lcosb

Suppose that the charges +@) and —(Q at the points A and D are placed at
infinity while keeping Q/¢* constant (¢ — oo, Q — oo). Find the z-axis

component Fjy of the electric field around the origin O due to the charges +@)
and —@Q).

Same as Q1, suppose that a grounded spherical conductor of radius R is also
placed at the origin O in Q4. Find the r-component E, and the 6-component
Ey of the electric field E at the point P outside the conductor at a distance r
from the origin O.



\Y%

[A]
UTOMWZEFNENEZ L, RV~ EBE kK ET D,

1. 1 = I NVERICEB W TOHERIE 2 18 E T 2B FRREEZ LT 6§

/\"Cb/\o
IR - R, R, ARl kv — BE bR T v, T
hr—

2. IBE TIZRB T DA ) = NVERIZBWT, SBHEARE r O = x L X—7
TEEREE CIRREFN) Z THHRE B 27~ & &, WHHRANIREE r OB
=R pr s,

3. B T I2BIFAH ) =V ESICBWT, ~LARLY BT RILX—F
EoECBA CIRBEFD) Z & DR AR,

4. LA OIRRE &) b/RsRMIRIE & 2§~ T,

ERA Rk MR N or R — IR, BERT vy b, T
v hrbE—

(KEILDoK)



[B]
BET ., KBV O =RITOFDOHFIZEEmm OKMESFBAS> TVDHIREELS
R %o KD FITHBRIETH LD L E  UTOMWIZER L 272, B=1/(kT)

(k WARNY <~ ER) ZWBIRE, ha27 7 78R (h=h/2r) &7 5,

f1. &AE5723 N EORE, 5EdREEL Z 23,
VN m 3N/2
Z= N (2nh2ﬁ>
L b, L, UTOEGAXEZHE-TH LW,

j e~ dx = \/g (a>0)

2. BIDFRE DR TRUELD T ORI DD T DL ALFERT vy
ZHAWT, ROEREE E & BB Z OBIfRZ R L7a Sy,

3. =) PIZROECEAE E LIRFEV 2 W T
b log =
1%
EERTILENTES, ZOR, 1 OnER%Z /2 OB EHWS =
XV, pm, B h o THASIKDES P 23R X,

W2, BIRDyFORE~OWE (BETFA FR) IZOWTEZ DL, RMEIZIE
Ny HDOLy ISR ETE DWMEYA 0N H Y, K52 OWEYA M, KBS T
D—27NF < oD M AT HE DN TW RN OWTINNTEET L, o F—2biz
DOENENACFERT oYV E p WMAETRNVX—% —v<0 LT D, £z,
WESFEOMABERITERTE 20 L35, 2O, LFORWIZOWNWTE

nNTNnEZ &,

R4, W5 A FRORSBECRIEL 2 23,

== (1 + eﬁ(v+ﬂ))NS

ThHdIEart,

(KHEIZHS)



RH5. RENZWE LTV D 55FDE(N) 73
NyeP @+
V) = T epomm

ThHdIEuart,

6. WAEYA RO EDRRENGFTEEN->TWVDENE W) WEREZ0 = (N)/
N, EEFETHE, M3 TROZJESP LR S TRDIZ(N)Y ZHNT,
P
O=—
P+ Py(B)
bt ERE, ZTIT,
e_Bv m 3/2
Po(B) = T(—znhzﬁ)
TH D,



\Y%

[A]
Answer the following questions. Let & be the Boltzmann constant.
Q1. Choose all thermodynamic properties that specify equilibrium in a canonical
ensemble from the following:

“particle number, volume, internal energy, temperature, chemical potential, entropy”

Q2. Write down the probability p, of a state » with energy E, in the canonical ensemble

with temperature 7 and partition function (sum over states) Z.

Q3. Write down the relation between the partition function (sum over states) Z and the

Helmbholtz free energy F in the canonical ensemble with temperature 7.

Q4. Choose all intensive properties from the following:
“particle number, volume, internal energy, temperature, chemical potential, entropy”
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[B]

Consider an ideal gas consisting of independent molecules each with mass m in a box
of volume V at temperature T. Let § = 1/(kT) (k is the Boltzmann constant) be the
thermodynamic beta and h be the Planck constant (A = h/(2m)). Answer the following

questions.

Q1. For N molecules, show that the partition function Z is given by

N m  \3N/2
Z =—
N! (2nhzﬁ>

You can use the following integral formula without proof:
® T
j e~ dx = \/; (a > 0).

Q2. Write down the relation between the grand partition function = and partition

function Z by using the chemical potential u.

Q3. The pressure P can be expressed using the grand partition function EZ and volume
V as
log 2
P = .
i1%
Find the pressure P of an ideal gas in terms of w, m, 5, A by using the results from
QI and Q2.

Next, consider the adsorption of the above-mentioned molecules on a surface. Let us
assume that the surface has adsorption sites that can adsorb Ng molecules, in which each
adsorption site has either one molecule attached to it or none. Let the chemical potential
and adsorption energy of each molecule be u and —v < 0, respectively. Let us assume
that the intermolecular interactions of the adsorbed molecules are negligible. Answer the

following questions.

Q4. Show that the grand partition function Z in the adsorption system can be expressed
as

u = (1 + eﬁ(’”‘ﬂ))Ns_
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Q5. Show that the total number of molecules (N) adsorbed on the surface is
NeP+m)

(N) =7 T P’

Q6. Let us define the coverage as the fraction of adsorption sites blocked by molecules,
thatis © = (N)/N,. Show that the coverage can be expressed using the results of Q3
and Q5 as

P

®=m,

where

P =1 ()



