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EM#EE

HEEFE @R, EIC OV TOMERETR)
1. 52008 I~V) bbb, BB TIERPIOFIALE RS FHATHS
fiRsgs &, [ I~V Tk, EagfE L IcHME (Al [B) &0 |
2 TOMBIZHRESE L, fEITERIUED G Y e b D &2 BENERIC
- TREAR Lo ML, &ANCHAGE T, RICEFETENNL T
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There are five problems (I~V). For the problem I, read carefully the
explanation in the first page. Each of problems II~V consists of
basic and advanced problems ([A], [B]) and answer all of them by
selecting the correct answer(s) from the list of choices or by writing
the answer. All the problems are given first in Japanese, and then in
English. The contents of the problems are the same.
2. TNTNORMEIZSE —HOMENRZE &, £7o. MEE S 2 W
AN
Use one sheet of answer paper separately for each problem. Write
the problem number at the top of the sheets.
3 THEEHMITREORLE LA,
Draft sheets will not be marked.



[

T 10055 5 %8R U, MEES 2RO L, @ETX, 270, AL [B].
DEFVERED TH & B 1 IS BT 5 2 &, B XL (1)~ (6) 758N,

A
1. ROFFHIARDMEE UTIELWVE D EENR,
-1 1 1 1
1 -1 1 1
1 1-1 1
1 1 1-1
(1) 8 (2) 12 (3) 16 (4) -8 (5) =12 (6) —16

2. IROATHIDWifT5] % KD, TOTRTOEEDHOMEE UTIELWE D ZIENR,

1 0 2
3 1 1
0 2 3

3. MX(—2,0,2) B3 £A(1,1,3). B(0,-2,2). C(3,—1,0) %85 FH EizdhHb, D,

zDEE UTIELWE D ZEN,



il 4. ZIRuZEMIZB T BALERT MV F = (2,y,2) EENZ ML @iz LT,
¢ Jax9 (1))
r

DL LTELWEDEER, 722 Lr = T 5,

(1) &r (2) —&F (3) 22r
(4) —%r (5) a- (5 — ) (6) 0

B
15 1'DOXRRELUTIELWEDZER, 72770, kIMEEOELE.  I3EBHAL T 5,

(1) -1 (2) 3i
(5) —1 + mi (6) 2kmi

6. IROFEIFESDOMEE UTIELWE D% ENR,

f dz
CZ2+1

77Uy CIIEE TR TR 2 b L T 2 4% |2 = 2 O % KIFEHE D 12 1T 3

HEDET B,
(1) m — i (2) 27 (3) m
(4) 0 (5) —mi (6) —2mi

(REI#E <)



M7 fla) D7 =) ZZ#F(k) DRRE UTELVHDZENR,

fla) = et
tﬁbwnw\mmz_%/"ﬂ@amMaﬁéo
T J—00
(1) ia 2 a

a?+k? (
(

)2t (3) —y/ Lt
5) \/ge—mlﬁ (6) _\/;e_(a2+k2)

C]
[ 8. IXDTERMA WD HEADMHORAL UTIELWEDEEN, 72720 CIHMEED
EWE T 5,
(x + 4y)dx + (4z + 3y)dy =0
(1) 222 + 5zy + 3y* = C (2) 22 — Toy — 2y = C
(3) 222 = 3wy —y* =C (4) 322 + zy + 5y* = C
(5) 22 + 8xy + 3y* = C (6) 32% — 4oy — Ty* = C

9. f(x) FROEBRZ R &35,

flo) =1+ / (= ) fo)e

£(0), £(0) ZFHHED £, f(z) DWW HBRANPEHNTED, INEME f(2)
DEAREUTIELVWEDZEFEN,

(1) cosz (2) sinz (3) cosz +sinz

(4) cosz —sinx (5) e (6) e

[ 10. (RO DMEE LTIELWEDZENR, 72770, a,b>0&7 5,

//e(“IQeryz)dxdy
0 0




Answer five out of the following ten questions choosing at least one question from each
of the groups [A], [B], and [C]. Write the question numbers clearly on the answer sheet.

Choose your answer from the options (1)-(6).

A
Q1. Evaluate the following determinant.
-1 1 1 1
1 -1 1 1
1 1 -1 1
1 1 1 -1
(1) 8 (2) 12 (3) 16 (4) =8  (5)—12  (6) —16

Q2. Find the inverse matrix of the following matrix, and calculate the sum of all the

inverse matrix elements.

(1) 15 (2) 3 (3) 13 (4) 13 (5) 13 (6) 1

Q3. Point X(—2,0,z) is on a plane passing through the three points A(1,1,3), B(0,—2,2),
and C(3,—1,0). Find =.

(Continued on the next page)



Q4. Let 7= (x,y, z) [r = |F]] be a three-dimensional position vector and @ a constant

vector. Evaluate the following expression.

S0

B
Q5. Let k be an integer number and ¢ the imaginary unit. Choose the expression that

equates to 1.

(1) -1 () 5i (3) e
(5) =1 + mi (6) 2kmi

Q6. Evaluate the following integral where the contour C traces the circle |z| = 2 centered

at the origin once in the counterclockwise direction on the complex plane.

% dz
CZQ—f—].

(Continued on the next page)



Q7. Calculate the Fourier transform F(k) of f(z) = e~*"! where F(k) =
\/%7 7 f(z)e ™ dz and a > 0.

C

Q8. Solve the following exact differential equation, where C' is a constant number.

(x + 4y)dx + (4z + 3y)dy = 0

(1) 22% + by + 3y = C (2) 22 — Toy — 2y = C
(3) 222 — 3zy —y?* =C (4) 32% +zy +5y* = C
(5) 22 + 8xy + 3y* = C (6) 32% — 4oy — Ty* = C

Q9. f(z) satisfies the following relation.

flz)=1+ /Oz(t —z) f(t)dt

Calculate f(0) and f’(0), derive the differential equation of f(x), and then find
f(z).

(1) cosz (2) sinz (3) cosz +sinz

(4) cosx — sinx (5) e (6) e

Q10. Evaluate the following integral. Let a,b > 0.

//e(“m%rbyz)dmdy
0 0




I
[A]

M1 & m O ASHEE § CHEB LTS, ZOBAICHNDNENREXE =0 &2i=7
X RICR SIOBMRERE LTIELWEDOELL T D — 0@, 7277 L, 7138
DB N ThA, F-. BIREFO ¢ 122 FE L. miTelc L oT—ELT
%,

(1) mb=0 (2) m@F-3)=0 (3) mEx$)=0

av = d ,» - _ i - - _*’
(4) m—=0 (5) ma(r-v)—o (6) mdt(rxv)—O

2. ZRTTEA AR % = (x,y,2) & IEMEIALARTET R B = (py, py p,) ZHNT,
L= (Lx: Ly:Lz) = (ypz — ZPy,ZPx — XPz XPy — ypx) PEZHATND,
Ly & Ly ORT v Y AFIK Ly, Ly} OFFFFERE LTELWHOE LI D

(1) (yp, — zpy)(zpx — xP,) (2) xy (3) papy
(4) xpy — yps (5) xpy + ypi (6) xypipy

3. HER DR S ACE S AR v CEREZERN T 5, BRVHEBICE T T2 L7k
<, Flo, EREGICROEDS Z ERERIT 27200 v OFEMpEE LTELWL DA
UUFhb—2, 72720, #iBKITEEM, FEROKETHL & L, ZExHhL &
RO HEOBREEEST S, 22T, GIEHAINERTH S,

<1>\/%<U<J¥ <2>\/§<v< fzcm <3>\/§<v<z\/¥
(4)\/@<v< /ZGTM (5)\/¥<v<2\/¥ (6) ’ZGTM<U<2\/¥



[B]

TERUSRT Y . —ERZ2HNAER LR D DR 25 25, KRO—WHTA O IZHEE S
NTW5b, £70, BRIZORT EORP TROL I FHDEEDRB-TEY, POED
DZBRBICEEETHZ ENTE D, EKOPEREERITZNEILa, M ThD, 1z, KD
BT, ZOEEIEH XD LT 5,

Z TR, REZDEETICERE D L CERCEEL . %@%@%@%;w%@
FHR3 R 0 & B LRl — OB N CIThN GG DOREZ 2D, £T-EORE, HITkiE
LDET. BRITEEMACZEbRNET D,

IR, JRRZROIZED, ZIob/KFEHMIC xth, ShE T HICyE b, /2, y
W EEAROP DT A% 0, yIEEBRPGCORT A% ¢ LT 5, 72721, GIZEROFELT
bo, EIMNEEL g, ROENES LT D, 61T, HDOEHX ORFHIZHONTOD 1
BE. 2By EZNENRX, X TET, 20L&, LTOMICEZ L,

X

vy Mg

1. ERO L G D x HROEBE) HFENE LTELWLDELLFNL 2@, 72720, xg
IXGDxEIETH 5,

(1) Mxy; =—Ssin@ (2) Mx; =—Ssinf + Mg
(3) Mxy = —Ssing (4) Mxz; = —Ssing + Mg
(5) Mxy = —Ssin(¢p — ) (6) Mxy; = —Ssin(¢p — 6) + Mg

(KEIZH>5L)



2. BROEFL G O y HROEB) HFENE LTELWLDOELLTFNL— 2@, 72720, yg

XGCDyHEIETH 5,
(1) My;=—Scos#@ (2) My;=—Scosf + Mg
(3) Myg; = —Scos¢ (4) Myg=—Scos¢p + Mg

(5) Myg = —Scos(¢p —6) (6) Myg; = —Scos(¢p —6)+ Mg

M. ERKOBELGCOEDLY DIEMEE—A L T ELTELWHDELLFND D,

0)1=§Mﬁ @)1=§MF B)I=§M@+DZ

M)I=§Mﬁ @)1=§Mﬂ %)I=§M@+DZ

M4 BROEL GO FE DLV OREROEF) HRXE LTELWLDOEZLITFNS 0~ 7272
L. 1IR3 CHLNTZIBEMEE—X L FTH D,

(1) I¢ = —Sasinf (2) I¢p = —Sasinf + Mga
(3) I¢p = —Sasin¢ (4) I¢ = —Sasing + Mga
(5) I¢ = —Sasin(¢p — 0) (6) I = —Sasin(¢p — 0) + Mga

IR, Ms3sclEonzEtEe—2r rIZ2HnWTk=JI/MEEHEL, nEHWVWTas=
k?/(al), B=a/l LT 5,

5. ¢ D72 T _REFRERNE LTELWHDELLF ML 28, 72720, 6, ¢ »B+5/h
EWELT, 0, ¢, 0, ¢, 8. ¢ D2WUULEEHET S,

() §=22(6-¢) @ =150~
(3) ¢ =22[(a+p)O - B¢ @) ¢=751(a+p)0 ~ag]
(5) ¢ =22[(a = B0 + B¢l 6) ¢ =721(a—p)0 —ag]

(KEIzH>5L)



f6.0 D=9 & HRXE LTELWLDOZL TS — 2@, 72720, 6. ¢ D157/
EWELT, 6, ¢, 0. ¢, 6. ¢ D2WLZEHT 2,

() §==22(0-¢) @) §=-220-9)
(3) 8§ =—9=[(a+p)0 - fo] ) §=-22[(@+p)6 - ag]
(5) §==2=2[(a—p)0 + o] ®) §=-21[(@-p)0 - ag]

7. /5 L6 THONT 2 DO TR A Mk L THE b2 A HERE O J5 ] T 13k
DI THZBND,

T=2n\/%(Ai A2—4B)

A. BOMBEDEELE LTIELWSDE LI ND—DE N,

(1) A=1+a+p, B=a (2) A=1+a+p, B=p
(3 A=1-a+B, B=a (4) A=1-a+B, B=§
5) A=1+a—-f, B=a 6) A=1+a—-p, B=p



I
[A]

Q1. A point mass of mass m is moving with velocity #. Consider force F acting on this point
mass such that # x F = 0, where 7 is the position vector of the point mass. Which one of

the following expressions is always true? Here, t is time and m is independent of t.

(1) mé=0 (2) m@#E-8)=0 (3) m(#Exs)=0

@ m%=5 G miIGH=0 (O mEEx9=0

Q2. Let L= (L, Ly,LZ) = (yp, — ZDy, ZDx — XDz, XDy —yp,) with position ¥ = (x,y,z) in
three-dimensional Cartesian coordinates and conjugate momentum g = (py, py, D) -

Which one of the following is the correct evaluation of the Poisson bracket of L, and L,,

{Ly,L,}?

(1) (yp, —zpy)(zpy — xP,) (2) xy (3) papy
(4) xpy — ypx (5) xpy + ypx (6) xypxpy

Q3. A point mass is launched from the surface of the earth in the horizontal direction with
initial velocity v. Which one of the following gives the condition so that the point mass
keeps orbiting around the earth without falling to the ground or flying away to infinity?
Here, G is the gravitational constant. Assume that the earth is a sphere of radius R with

mass M and that air resistance and any effect of the earth’s rotation can be neglected.

(1)\/%<v<\/¥ (2)\/%<v<\/@ (3)\/%<v<2\/¥
<4>\/¥<v<\/@ (5)\/¥<v<2\/¥ (6)\/@<v<2\/¥



[B]

As shown in the figure below, consider a pendulum made of a uniform rigid sphere
and a piece of string. One end of the string is fixed to the point 0. The sphere is attached to
the other end of the string at the point P on its surface and can freely rotate around the point P.
The radius and mass of the sphere are a and M, respectively. The length of the string is [ and
its mass is negligible.

Consider the following scenario: the sphere is released gently with the string taut so
that the pendulum oscillates and the sphere rotates in the plane containing the point 0. In
addition, the string never slacks or winds around the sphere.

The origin is set to the point O and the x- and the y-axes are taken in the horizontal
and vertically downward directions, respectively. 8 is the angle between the y-axis and the
line OP. ¢ is the angle between the y-axis and the line PG, where G is the position of the
sphere’s center of gravity. Let g and S be the gravitational acceleration and the string tension,
respectively. X and X denote the first and the second time derivatives of any given variable X,

respectively. Answer the following questions.

0 >
X

vy M.g

Q1. Which one of the following is the equation of motion of the sphere’s center of gravity G in

the x-direction? Here, x is the x-coordinate of G.

(1) Mx; = —Ssin6 (2) Mxg=—Ssinf+ Mg
(3) Mx; = —Ssing (4) Mxg=—Ssin¢ + Mg
(5) Mxg = —Ssin(¢p — 6) (6) Mxg =—Ssin(¢p —0) + Mg

(Continued on the next page)



Q2. Which one of the following is the equation of motion of the sphere’s center of gravity G in

the y-direction? Here, y;, is the y-coordinate of G.

(1) My; = —Scos#@ (2) My; =—Scos@ + Mg
(3) Myg; = —Scos¢ (4) My; =—Scos¢p + Mg
(5) Myg = —Scos(¢p —6) (6) Myg; = —Scos(¢p —0)+ Mg

Q3. Which one of the following is the moment of inertia, I, of the sphere around the sphere’s

gravitational center G?

(1) 1=§Ma2 2) 1=§M12 (3) 1=§M(a+l)2

(4) I = EMaz (5) I = %Ml2 6) I = EM(a +1)2

Q4. Which one of the following is the equation of motion for the sphere’s rotation around the

sphere’s gravitational center G? Here, I is the moment of inertia given in Q3.

(1) I1¢ = —Sasinb (2) 1¢ = —=Sasin® + Mga
(3) I¢ = —Sasin¢ (4) 1¢ = —Sasing + Mga
(5) I¢ = —Sasin(¢p — ) (6) I¢p = —Sasin(¢ — ) + Mga

Leta = k?/(al) and B = a/l, where k = \/I/M, with the moment of inertia I given in Q3.

Q5. Which one of the following equations does ¢ satisfy? Here, 8 and ¢ are assumed to be
sufficiently small so that the quadratic and higher order terms of 8, ¢, 8, ¢, 6 and ¢ can

be neglected.

(1D ¢=220-¢) @) §=550-9)
(3) ¢ =2=[(a+ )0 — p¢b] @) ¢ =751(a+p)0 ~ ag]
(5) ¢ =2=[(a— )0 + p¢b] 6) ¢ =751(a—p)0 ~ag]

(Continued on the next page)



Q6. Which one of the following equations does 6 satisfy? Here, 6 and ¢ are assumed to be
sufficiently small so that the quadratic and higher order terms of 8, ¢, 8, ¢, 6 and ¢ can
be neglected.

(1) 6=-210-¢) (2) 6=-1500-¢
(3) 6=—22[(a+p)0 - po] (4) 6 =—22[(a + )0 — ag]
(5) 6=-91[(a~ )0 + pe] (6) §=-75[(a~p)0 —ag]

Q7. The periods of the normal modes, which are obtained by diagonalizing the two

differential equations given in Q5 and Q6, can be written as follows:

T=2n\/i(fli A2—4B).

Which one of the following combinations of A and B is correct?

() A=1+a+p,
3) A=1-a+p,
B) A=1+a-p,

(2) A=1+a+p,
4) A=1-a+p,
6) A=1+a-p,

T W W
I

R R R

v W W
I

™D ™ ™



M1

[A]
1.

2.

fil3.

TR, TR, BRETEMmOBREZUTOREXTEN L & 2hTh(),
(), 3), DITHTITED LD E @D BG) DHFNEES,
M=@D=B®=®
(a)—1 b-1-1 @1l @@Ii+1 (@ -m Hm (g m—1()n
@ n+1@Gn-1
IKFBIRIF A O F8'FH n DT RV F—NERLDOMHEDE % () B (d)DH B,
(@ n (®) n@+tl)  (©)n" (d)n
MEHEE 2P =(9,2). EBHEHEE 72D = (PrnDy.p,). PEMEBRHEA F4L =
(Ly, Ly, L,)& U TUL T OSHABAR DFE R A ()0 B (m)D 538,
(1) [x, Dy, (2) [2,D.], 3) [Ly Ly],
(a)0 (b)in  (c) =ik (d) ik (e) —ih® (f) ihz (g) —ihz (h) —ihL,
(i) —ihL, () —ihL, (k) ihL, (1) AL,  (m) AL,



[B]

KFIFA O —FhERAED 25, 2p IRREIZ X (n, [, m)=(2, 0, 0), (2, 1, 1), .
@mezhm@4ﬁmeﬂ%éomﬁﬁ%%#%@%%%®¢
2B &, 204 EOMRITH IS 5 Z ENFmbNTWD, ]
TREEFRE LEARD L 97 r, 0, TR ENDMEE TE X, ao &
R—T 1R, BLOEME —e & LTUTORWIEZ X,

R, MREREERZETO 25, 20 REEDInIm) = [200),[211),[210),|2 1 — 1)D kAL S 7= ik H)
BAE & (@) (D 2 LU EDOBEDOR E L TE A X,
() 1200), () [211), ((3)]210), () [21—1)

3

w

@R —(JLY(Z—IJeT% (b)R —(J;Y—i—aﬁﬁ (O Yoy (6, ) = ——
20 = 24, P ) 21~ 24, VRag ) 008, 9) =7
(d)Y1400,9) =\/§c059, (e)Y11(0,¢) = \/751n9 e, (HY;_1(0,¢9) —(sm@e i

fA2. B +z I Z2 AW TO S EATE=O0, 0, E)]D—ROEBE TOEHEI NI L b =7 H % (a)
MHEGD I BLRLEREOOfEE LTHEYE,

(@) e (b)E (c)cos@ (d)sinfd (e)tand (Hx (gpy (h)z @{@r (G -1

3. (DD SO) TR LA OFTFIESRE 2GR L, #RE T2 @)h SO0 HiER
() (200|H'1211) (2)(200|H'121—1) 3) (200|H'|210) (4) (210]H'|211)
6) (2101H'121-1) (6) (211|H'|121-1)

WEZG U CoaSIEEE, n 23 1 L EOFEE DR Y SLOLL T O AR EHWTH B
Uy,

*® n!
f e %dr = ——
0

an+1

(a)o, (b) eEaO, (c) eEaO, (d)fean, (e) eEaO, ) — eEaO, (g) —V3eEa,, (h)V3eEa,,

(i)3eEay, (j)—3eEa, (k) —3v3eEa,, (1)3V3eEa,

(KEIZH>5L)



4. ZOBEITOZRAF—DEZIRD@NO(DHF I H TR TiEN

e
(a)o, (b);iean, (c)\/%eEaO, (d)\/gean, (e)\/%eEaO, () —\/%ean, (g) —V3eEa,, (h)V3eEa,,

(i)3eEay, (j)—3eEa,, (k) —3v3eEa,, (1)3V3eEa,

5. ZOEENC L D& bR 2R — 2R ORRL L BEARIEZ LU T D@70 5(0)H 25

<,

1 1
(@1]200)(b)|210) (0)|211) (d)[21-1) (e)ﬁ(|200)+|210>) ® ﬁ(|200>+|211))
1 1 1
® E(|200)+|21—1)) (h) ﬁ(|210)+|211)) 0] ﬁ(|210>+|21_1))
L1 1 1
6); ﬁ(|211)+|21—1)) (k)ﬁ(IZOO)—ﬂlO)) (I)E(IZOO)—|211))

1 1 1
(m)ﬁ(|200>—|21—1)) (m) 50210)4211)) (0) ﬁquO)_lZl_l))



M1

[A]

Q1. Consider the relationships between principal quantum number, n, azimuthal quantum number, [, and
magnetic quantum number, m, given by inequality expressions. Choose the correct expressions from
(a) to (j) for (1), (2), (3), and (4) in the inequality.
M<@<BG) <@
(a)—! (b)-1-1 !l @Ii+1 e)—-m (Hhm (gg m—1 (h)n
Hn+1(Gn-1

Q2. What is the number of degeneracies for the energy level a hydrogen-like atom with principal

quantum number 7.

(@ n (b) n(ntl)  (o)n” (d)n’

Q3 Choose the correct expression from (a) to (j) for the commutators given in (1), (2) and (3), where
7= (Xx,9,2) is the coordinate operator, P = (ﬁx, ﬁy,ﬁz) the momentum operator, and L =

(Ex, iy, f,z) the angular momentum operator.

(1) [%,Dy], (2) [2,P.], 3) [LyLy],
(a)0 (b)ih  (c) —ih  (d) iht  (e) —ih® (f) ihz (g) —ihz (h) —ihL,
(i) —ihL, () —ihL, (k) ihL, (1) AL,  (m) AL,



[B]

There are the four degenerate states (n, [, m)=(2, 0, 0), (2, 1, 1), (2, 1, 0), (2,
1, -1) for the n=2 state of the hydrogen atom. The degeneracy can be partly
lifted in a uniform electrostatic field. We define the polar coordinates, where

(r, 6, @) gives the radial distance, azimuthal angle, and polar angle, as shown

in the figure to the right. The nucleus of the hydrogen atom is located at the

origin. The Bohr radius is ao, and the electron charge is —e. Answer the

following questions.

Q1.  Express the normalized wave functions for each of the degenerate states for n=2 as a product of at
least two of the options (a) to (f).
(1) [200), (2 1211), (3)]210), ) [21-1)

3 3
r

@reo = (5) (2 2)e 7o (b)R21=(Zi%)§f3L%e‘2Lao, (oo 0,9) = 7=

@o(0.9) = [Zcoso, @4, 0.9) = - [Zsinoe, 0%16,0)= [Zsinoes

Q2. Calculate the Hamiltonian for the first order perturbation by a constant electric field parallel to the +z

axis, E=(0, 0, E). Express the Hamiltonian as a product of at least two terms listed under (a) to (j).

(@) e (b)E (c)cos@ (d)singd (e)tand (Hx (g)y (h)yz @GHr (G —1

Q3.  Evaluate the matrix elements of (1), (2), (3), (4), (5), and (6), choosing the correct expressions from
(a) to (I).
(1) (2001H'1211) (2)(200]H|21—1) 3) (200 H'|210) (4) (210|H'|211)
6) (2101H'121-1) (6) (211|H|21-1)

If necessary, use the following integral formula

|

an+1

f e dr = n=12,3-)
0

where the o is a positive constant.

(a)o, (b):}/—jean, (c)\/%eEaO, (d)\/gean, (e)\/%eEaO, (H) —\/%ean, (g) —V3eEa,, (h)V3eEa,,

(i)3eEay, (j)—3eEa, (k) —3v3eEa, (1)3V3eEa,

(Continued on the next page)



Q4. Choose from (a) to (/) below all of the energy variations that occur as a result of the perturbation.

V3 1 3
(a)o, (b)Eean, (c)\/ﬁeEaO, (d)\/;ean, (e)\/%eEaO, () —\/%ean, (g) —V3eEa,, (h)V3eEa,,

(i)3eEay, (j)—3eEa,, (k) —3v3eEa,, (1)3V3eEa,

Q5. Choose from (a) to (o) below the normalized eigen function for the state with the lowest energy

resulting from the perturbation.

1 1
(@1]200)(b)|210) (0)|211) (d)[21-1) (e)ﬁ(|200)+|210>) ® ﬁ(|200>+|211>)
1 1 1
® E(|200)+|21—1)) (h) ﬁ(|210)+|211)) 0] ﬁ(|210>+|21_1))
L1 1 1
6); ﬁ(|211)+|21_1)) (k)ﬁ(lzoo)—ﬂlo)) (Dﬁ(lzoo)—ﬂll))

1 1 1
(m)ﬁ(IZOO)—ﬂl—l)) (m) 50210)4211)) (0) ﬁ(|210>_|21_1>)
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[A]
Ql.

Q2.

Consider the case in which positive charge is slowly added to a metal sphere in a gas.
When the electric field on the metal surface becomes 1 X 107 V/m, electric discharge
occurs. Find the total charge @ X IOEIC on the metal sphere to two significant figures
at the time electric discharge occurred. Write down the numerical values for @ and B
Take the radius of the sphere to be 0.1 m and the permittivity of the gas to be € =
8.87 X 10712 F/m.

Consider the case in which electric charge is uniformly distributed along the z-axis in a
vacuum. When the charge density is 1 X 10 C/m, the magnitude of the electric field at
Im from the z-axis is ¢ X IOEI V/m. Find the magnitude of the electric field to two
significant figures and write down the numerical values for and @ Take the permittivity

of vacuum to be &5 = 8.85 x 10712 F/m.

Q3. When capacitors with a capacitance of C and 2C are connected as shown in Figure 1, the

Q4.

capacitance between A and B becomes = C. Write down the numerical values for B and

t].

C C

Ao—] 1
—2C — 2C

Bo—| ||

C C

Figure 1

When a proton with velocity v = @ X 10EI m/s is injected perpendicular to a uniform
magnetic field with a magnetic field density of 0.1 T, the proton moves in a circular orbit
with radius 0.01 m. Find the velocity of the proton to two significant figures and write
down the numerical values for g and @ Take the mass and the charge of the proton to be
1.67 x 10727 kgand 1.60 x 1071° C, respectively.

(Continued on the next page)



[B]

Consider a cylindrical magnetic material around which a conducting wire is tightly wound to
make a solenoid coil. The radius of the cross section, the length and the permeability of the
cylindrical magnetic material are a, [ and g, respectively. The number of turns per unit length
of the solenoid coil is n. Let the distance from the central axis be r. And, let the terminals of

the solenoid coil be labeled terminal 1 and terminal 2. Assume the thickness of the conducting

wire is negligible and a « [.

Q1. Find the magnitude of the vector potential along the circumference at r =1, (r; < a)
around the central axis of the coil when the coil current is I, and choose the correct answer

from the list below. Assume that [ is very large and that the effect of the edge of the solenoid

coil is negligible.

n2Ir nir nl?r n?|
(1) = () B @ = @k
2 2 2 27y
unl uni?
(6) — (6)
27'1 27'1

Q2. The solenoid coil is bent to connect terminal 1 and terminal 2 and make a circular solenoid
coil as shown in Figure 2. Find the self-inductance of the circular solenoid coil and choose

the correct answer from the list below.

un?l

2 unl 2,2
(1) ma®unl (2) —_— (3) ma‘unl (4) -

un?1?

2,272
(6) ma*un<l®  (6) —

(Continued on the next page)



O O cross-sectional view

radius a

Figure 2

Q.3 A new terminal, terminal 3, is attached between terminal 1 and terminal 2 as shown in
Figure 3. Let the angle formed by terminal 1 and terminal 3 be 8. How many times larger
is the mutual inductance between the coil section from terminal 1 to terminal 3 and the coil
section from terminal 3 to terminal 2 compared to the self-inductance found in Q2 when 6

is 72 degrees.

Figure 3

Q.4 How many times larger is the magnetic energy in the circular solenoid coil when an electric
current 21 flows through the coil section 1-3 and an electric current I flows through the coil

section 3-2 compared to when an electric current I flows from terminal 1 to terminal 2.



v
[A]

LT O 1~3 O[@~[Qc A B E LW b 0 & 4R o@R 3, 1Lk
RVY < VERTH D,

1. RETOBFHRRIET, = F L F el 5 FIH TR,
VI AT 2 )-RVY = R Ay = ;

exp{(ei~w/kTI+[@)]
1

exp{(ei—w) /kT}+{(b)]
N YR = 1
TV I-T 4T v e L Y ]

ERIND, plIfbERT ¥ L TH D,

R—=A-TAvvadf U fiih: =

D0 @+ @G — @+ G 6 +7 (D=2

M2, A= LX—%2U, = habt —%S, REAT, [EHxp, KLV E

L 7= B
T AL — H =[(d)]
AV AFRALY OB BT R L — F=
X7 AOHBHZ LT — G =[]
Th 5,

(1) U+Ts (2 U-TS 3) U+pV 1) U—-pV (5) F+TS
(6) F—=TS (7) F+pV (8) F—pV

M3, O HTHN, FEV. RETHRE SR ICH S LS BERRIED 5 5
T, TXIVFXF—FEIZEL WY OO R MER)N

—E/kT
P(E) = ==

ZEe—E/kT

ThoHHAEEE[@ES L L5 [W]EHH S DIZHEL T 5.
@ RV, WET. LFERT v p bpdd —EICHRE SRS END

WHRRRED 5 H T, =R LF—REIZHF L, BFEANIHFELND

D O H B R 73

e(UN=E)/kT
P(N,E) = s~y

ThoHHAEGE[DES L L5 [QFBE > Ol L THh5,
WA =0n @)I7v B )=V @)VJ7TFK-U/)=0IL
DRFOMADRAfERF G)IRE DT I F—DLRNRTF S ND R
(6) A1 7 & AT L 72



B

L IRe =M DA REBICBACIAD oz 2K 72 S 2% A2, MNTELB X
AR OMBEEHAZ FROET IV TRk T2 Z 21235, AUHEE M %
ROk 7 1 LR 21380 PQ Fizd v, NE2ER p DX THEMEML
TWb, 2RFLHBeDMEEMIZ. P e+ 1BX0 Q 2R+ 2 DM
WZHBNITEHR 0 D2DDNITRING, 20D FIXEELZD, 5
i AR 7203528 320nwEDET 5, ZOROEEIREE— NiX
2o0bH0, Thoz A KU B & LT, ARERTIENEN

o 20+ 0
WA — M, wp = Y

Thbd, ma & mp % 0 ALOEKLE LT, ZORDEAEIRED T X)L
F—Ilx

1
EmA,mB = Z (mj + 5) hOJj

j=A,B

Thzohd, 22T, h 2753V BELT, h=h/2r TH5D, HE
T, RVIYSRVERZE KL L35, AFOMWIZEZ &, b, BRI
ETOMWZHEETH D, MEOKRRIZGAONT WS, WD WHRERT
X, BISLTHhSE m&% ENR, ZTOBE, SRHZ 1 ZANTH LW,

F 1. % S OAWIBI Z(T) 1
Z(T) = ZA(T)Z(T)

(IXHIZD2DK)



DESIZ. 2OOHEFEHE— K A RO B 2T 2 HEEHOR &
7%, UMD 20K Z;(T) (1 A £7213 B) 1ZK0
RCHERBND,

(d)
(c) eXp( = )

@) 55 [(e) [ I AZEL WS D& I D s 5 A,

RS EEIURPEWITHNIZ Nidhde L, £DOER%E Sy £ 95,

2. 2% Sy DR Zy(T) FIROXTHEA LGNS,

(a) (b)
Zn(T) = Zs(1) I

(c)

@)] 25 [(©) 1L ABEL VD& B O 5 A,

3. 2% Sy DANVLAFVYDHHBHIZRIVY— Fy(T) 1,
Fn(T) = Fa(T) + Fp(T)

DESIT, MUREZRE22O0BB Fj(T) (j 13 A XZIEB) O
ez, Fi(T) 3RO THE A 6N 5,

(b) (f)
+|(d) |lo (e) |—ex
© g{ ( ® )H

@) |55 [(@) [T ABELWE D ERE DA 5 RA,

F5(T) = | (a)

4. ©2% Sy DAEBT IV F — UN(T) =
Un(T) = Ua(T) + Us(T)

(REIZ29K)



DESIT, AUEEZFRD2OOBB U;(T) (j i3 A XxZEB) O
ez, U;(T) IFRORTHEZ N5,

( \

b d

(c) (e)
| eXp( 5 ) (g))

@) |55 [(@) | ABELWE D BRI DA 5B,

5. 2k LA E DHMEERIZERTR 7R LEOMETD EZm <,
cKLpTHdETHE, wa<wp THD, ZOK;, £2% Sy D
B sEOEAEIR, IR kT < hwa T | (a) | H TR RS S
hwa < kT < hwg TliE | (b) |\ iR hop < kT Tl |(c) | TH
%o [(a) | 225 |(c) [ ITADERDEYRD D2 EIRLDHH 558N,

U

(7) =1 (8) =2 (9) =3 (10) —4 (11) =5

(12) N (13) N!'  (14) (N —1)! (15) (N —2)!

(16) 3Nk (17) Nk (18) 3Nk (19) 2Nk  (20) 3Nk (21) 4Nk
(22) shw;  (23) Tw;  (24) 3hw;  (25) 27w,

(26) —2hw;  (27) —Tw;  (28) —3Nw;  (29) —2hw;

(30) kT (31) kT (32) 3kT  (33) 2kT  (34) 3kT  (35) 4kT



v
[A]

Select the correct answer from the list of option that go into N in questions
Q1~Q3. k is the Boltzmann constant.

Q1. In thermal equilibrium at temperature 7, the mean number of particles 7;

with energy ¢; are given for
1

exp{(e;— 1) /KTH]@)]
1

Maxwell-Boltzmann statistics by : n; =

Bose-Einstein statistics by : n; =
exp{(g;—w)/kT}+ (b)]
/)

Fermi-Dirac statistics by : n; =

exp{(e;i—w)/kTI+(©)
u is the chemical potential.

M0 @+ () -1 @+ ®H-1 (6 +> (-2

Q2. The enthalpy is given by H = ,
the Helmholtz free energy is given by F = , and

the Gibbs free energy is given by G = ,

where the internal energy is U, the entropy is S, the temperature is T, the pressure
is p and the volume is V.

() U+TS Q) U—=TS (3)U+pV (4 U—pV (5) F+TS (6) F—TS
(7) F+pV (8) F—pV

Q3. (a) A system specified by particle number N, volume V and temperature T

occupying a microscopic state with probability given by
e—E/kT

P(E) = 5* g

is called a ensemble. Here E is energy.
This ensemble is suitable for dealing with |(h)]|.
(b) A system specified by volume V, temperature 7, and chemical potential u
(constant) occupying a microscopic state with probability given by
e(WN—-E)/KT
PIN,E) = 5~ aw-mna
is called a ensemble. Here E is energy and N is particle number.
This ensemble is suitable for dealing with .

(1) canonical (2) micro-canonical (3) grand-canonical

(4) a system in which particles can freely enter and exit

(5) a system in which energy can be exchanged with the outside
(6) a system isolated from the outside



B

We consider a two-particle system S, which is confined to a finite region
in a one-dimensional space. To describe the interactions between the two
particles and between the particles and their surroundings, we use the
model which is depicted in the figure below. The two particles, which
are denoted as 1 and 2, are on a line segment PQ, and have the same
mass M. While they are interacting with each other by a spring with
spring constant p, they are interacting with their surroundings by the
two springs with spring constant ¢ between P and 1 and between Q
and 2. We assume that the particles do not collide or exchange their
positions. There are two normal modes, A and B, in this system, and
they have angular frequencies

o 20+0

YATA M “B=N\ T

respectively. With integers ma and mp which are larger than or equal

to zero, the energies of the eigenstates of the system are given by
1
Emame = Z mj + 9 hwy,
j=A,B

where h = h/2m, and h is the Planck’s constant. Let T' be the temper-
ature, and k the Boltzmann constant. Answer the following questions.
All questions share a common list of options which is given below the last
question. Reduce fractions whenever they are reducible before choosing

options. You may choose unity for the denominators.

1 2

Figure

(Continued on the next page)



Ql.

The partition function Z(7T') of the system S is expressed as a
product of the partition functions for the two normal modes, A
and B,

Z(T) = Za(T) Za(T).
The two functions Z;(7T) ( j is A or B) have the same form:

(a)
(b)

exp

Zi(T) =

(d)
(e)

(c) | —exp

Fill in the blanks from | (a) | to | (e) | with an item for each blank

chosen from the list of options.

We consider a collection of N systems which are identical to S and in-

dependent of each other. We call this entire system Sy.

Q2.

Q3.

The partition function Zx(T') for the entire system Sy is given by
(a) (b)
Za(T Zg(T
Zn(T) = All) 5(1) . (| (a) |and | (b) | are exponents.)
(c)
Fill in the blanks from | (a) | to | (¢) | with an item for each blank
chosen from the list of options.
The Helmholtz free energy Fn(T) for the entire system Sy is

expressed as a sum of two terms,

Fn(T) = Fa(T) + Fu(T).
The two functions F;(T") ( j is A or B) have the same form:

(b) (f)
+|(d) |lo (e) |—ex
© ° "\

F(T) =[(a)

(Continued on the next page)



Q4.

Q5.

Fill in the blanks from

(a)

to

(2)

with an item for each blank

chosen from the list of options.

The internal energy Uy (T') of the entire system Sy is expressed

as a sum of two terms,

UN(T) = UA(T) + UB(T).

The two functions U;(T) ( j is A or B) have the same form:

U (T) =

(a)

Fill in the blanks from

y

)

\

exp —(8)

J

to

with an item for each blank

chosen from the list of options.

We consider the case in which the interaction between the two

particles 1 and 2 is much stronger than their interactions with their

surroundings by assuming o < p. This leads to the relation wa <

wg. In this case, the approximate values of the heat capacity of

the entire system Sy are

(a)

in the low-temperature limit (k7T <

hwa ), | (b) [in the intermediate-temperature region (hwa < kT <

hwg), and | (¢)

in the high-temperature limit (hAwp < kT'). Find

the most appropriate item from the list of options to fill in the

blanks from | (a)

to

(c) |

(Continued on the next page)



List of options :

(7) -1 (8 -2 (9) -3 (10) -4 (11) -5

(12) N (13) N!'  (14) (N —1)! (15) (N —2)!

(16) 3Nk (17) Nk (18) 3Nk (19) 2Nk (20) 3Nk  (21) 4Nk
(22) shw; (23) w;  (24) 3hw;  (25) 27w,

(26) —shw;  (27) —Tw;  (28) —3Tw;  (29) —2%w;

(30) kT (31) kT (32) 3KT  (33) 2kT  (34) 3kT  (35) 4kT
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