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There are five problems (I~V). For the problem I you must answer five
out of ten questions. Each of the problems 11~V consists of basic and
advanced problems ([A], [B]). Answer both of them. All the problems are
written first in Japanese, and then in English. The contents of the
problems are the same. You may write the answer either in Japanese or
in English.
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Z HELE &

For each problem, use one sheet of answer paper. Write the number of
the problem on the answer sheet

FTEEIHRIRAOMG L L,

Draft paper will not be marked.
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Answer five out of the following ten questions. Begin by writing the ques-
tion numbers on the answer sheet clearly.

Q1.

Q2.

Q3.

Q4.

Q5.

Evaluate

njw

[

Let y be a function of . Solve the following differential equation,
assuming y? = v:
d
2:l:y—y + =y,
dx

Let f (z) be a function of z differentiable at x = 0 and ¢’ (x) be the
derivative of the Dirac delta function. Evaluate

/ Tl () ().

—00

Calculate the determinant

1 1 1
a? b 2
ad oA

and present the result in factored form.

Find all the eigenvalues of the following matrix.

1
0
1

o = O
—_ O =

(To be continued on the next page)



Q6.

Q.

Q8.

Q0.

Q10.

Let A be an n x n complex matrix. The hermitian conjugate A" of
A is the n X n complex matrix with its 75 element (AT)” given by
ij

(AT)ij - A;i :
Prove that the eigenvalues \ of ATA satisfy A\ > 0.

Let 7= (z,y, z) be the three dimensional position vector. Evaluate

[ [eteas ()

Let C be the contour which goes around the circle |z| = 2 counter-

clockwise once. Evaluate
sin z
% 5 dz .
C 24+ 1

Let 7 = (z,y,2) be the three dimensional position vector. Show
that

for a > 0.

/ / / dk dk dk: eikT
‘k‘2+m2

with k& = (kg ky, k.), satisfies the equation (62—m2)G(f’) =
—0(x) 4 (y) 0 (2).

Let us define the Laplace transform L [f] of a function f as

LI = [ e o).

Find the following inverse Laplace transform

-1

)
s24+3s—4]°
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[A]

Q1.

Q2.

Consider a free fall of a point mass of m in the vertically downward
direction. Let g be the gravitational acceleration. Answer the fol-
lowing questions. Define all variables that you may use except for m
and g.

(a) Write down the Lagrangian L of the point mass. Then write
down the Euler-Lagrange equation for the Lagrangian L, and
obtain the equation of motion of the point mass.

(b) Show that the mechanical energy of the point mass is conserved.

Consider a uniform circular motion of a point mass of m on the
circle of radius R in the zy plane. Let w be the counterclockwise
angular velocity of the point mass, O be the origin, and the positive
z direction come out of the page, as shown in the figure below. At
t = 0, the point mass is at the position 7 = (R,0,0). Answer the
following questions. Define all variables that you may use except for
m, R, w, and 7.

(a) Prove that the velocity of the point mass is always perpendicular
to the position vector 7.

(b) Write down the direction and magnitude of the angular momen-
tum of the point mass around the origin.

Y

A

zZ

L
%

(To be continued on the next page)



B

Let us consider the motion of a cylinder on a board as shown in the figure
below.

A long board with rough surfaces is at rest on the horizontal floor. A
uniform cylinder of mass m, length L, and radius R is at rest on the
board. We shall define the central axis as the axis that goes through the
center of mass of the cylinder and is parallel to the direction of the length
L.

Q1. Calculate the moment of inertia I of the cylinder around the central
axis.

When one pulls the board in the horizontal direction to the right by a
constant acceleration a, the cylinder starts to rotate around the central
axis on the board without slipping. The moving direction of the board
is always perpendicular to the central axis of the cylinder. As shown in
the figure, there is a friction F' in the contact part between the board and
cylinder. The positive x direction is the horizontal right direction. Let V'
be the velocity of the center of mass of the cylinder in the inertial frame
where the origin O is fixed on the floor, and w be the counterclockwise an-
gular velocity of the cylinder as shown in the figure. Answer the following
questions.

(To be continued on the next page)



Q2.
Q3.

Q4.

Q5.
Q6.

Write down the equation of motion of the center of mass of the
cylinder in the x direction.

Write down the rotational equation of motion of the cylinder around
the central axis. If necessary, one can use I in Q1.

: : . dV
Write down the relation among the acceleration g the angular
dw
acceleration e and the acceleration a of the board.

. . w . .
Obtain the angular acceleration — and express it using a and R.

Let pu be the coefficient of static friction between the board and
the cylinder, and g be the gravitational acceleration. Obtain the
criterion for a under which the cylinder rotates without slipping.
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In the following, let i = h/2m where h is the Planck constant.

[A]

Ql.

Q2.

Q3.

Consider a one-dimensional quantum system where a particle of mass
m moves along the z axis in a potential V' (z). Write down the
time (¢) dependent Schrodinger equation that is satisfied by the wave
function ¢ (z,1).

Let a function f(z) of the coordinate x be an operator acting on the

0
wave function ¥ (z,t). Show the commutation relation [a—, f(;r:)] =
T

agf(x), where ¥ (x,t) and f(x) are differentiable with respect to z.
T

For a Hamiltonian H which is independent of time ¢, the time evo-
lution of the wave function (z,t) is described by the operator
U(t) = e”/" as y(x,t) = U(t)y(x,0). Show that the probabil-
ity density [¢(z,t)|? is time-independent when H is hermitian.

(To be continued on the next page)



B

In quantum mechanics, the wave-like character of particles allows interest-
ing phenomena which are impossible in classical mechanics to take place.
Let us consider such phenomena in the example of a one-dimensional sys-
tem with a rectangular potential V(z) = 0 (region I : = < 0, region III :
a <), Vo(region IT: 0 < x < a) as in Figure 1. Let a particle of energy
FE and mass m be incident on the potential barrier from x < 0. The wave
function p(x) of the stationary state is then expressed by using constants

A, B,C,D,F as
V(x)
Aet*® 4 Be=** (region I) ‘
o(z) =< CeP* + De=P®  (region II) Vo
Fetke (region IIT) \/\f\/\/\\;\]\/ NP
wher§ 0 < E <V, and k and p are E e I ----------- I I ---------- I II ------
positive.
0 a X
Figure 1
Q1. Determine k and p in terms of E, Vj, m, A.

Q2.

Q3.

Write down the continuity conditions to connect

the solutions in different regions, and determine

C and D in terms of F.

When the transmission coefficient through the potential barrier is
small, the contribution from the increasing component of ¢(x) in
region II is small and hence |C| < |D|. In this approximation,
determine A and B in terms of F. In this case, the transmission
coefficient takes the form T ~ 7e 2%, Determine 7 in terms of k
and p.

(To be continued on the next page)
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Figure 2 Figure 3

In region II of width a where V; > F, the wave function De™"* decreases.
Its ratio at both ends is e7?*, and the exponential part of the transmission
coefficient in Q3 is equal to its square, e~ 2*%. Let us call this exponential
part,

W = (the ratio of the wave function at both ends of the region)?,

the penetration factor. Using this result, let us discuss the case where
a particle is transmitted through a more general and smooth potential
barrier. Let a particle of energy E and mass m be incident on a smooth
potential V' (z) from x < 0 as in Figure 2. Suppose, in the region (b, c)
where V(z) > FE, the potential consists of rectangular potentials of small
width Az. The potential around x = x; can then be approximated by a
constant V' (z;), and the decreasing wave function is given by D;e™?* with
D; and p; being constants.

Q4. The wave function in the region (b, ¢) is obtained by connecting the
decreasing wave functions in small regions. Calculate the penetration
factor and express it in terms of E,V (z), m, h.

(To be continued on the next page)



Q5. The potential between two nuclei A and B of charge ¢p and g¢g,
respectively, is schematically given as in Figure 3 with r being their
distance. For r < r, it is V(1) = agags/r where o > 0 is a constant.
These nuclei can fuse when transmitted through the potential into
the region r; < r. Let Wa-g be the corresponding penetration factor
for given energy E > 0. Apply the result in Q4 to hydrogen (H) and
helium (He), the main elements in the sun, and discuss the relation
between Wy-pg and Whe-He.

Here, let the ratio of the masses of H and He be my,/my = 4. The
mass parameter for the relative motion of the nuclei is the reduced
mass m = mampg/(ma + mp) given by the masses of the nuclei
map. In both cases, H-H and He-He, assume that 7 is sufficiently
smaller than ry defined through V(ry) = F, and use the formula

—= . dry/¢ — 55 ~ 5. Assume also that the effect of angular mo-

mentum is ignorable.




I\Y
[A]

M1 K1DXHic, BERTER o MR Lo 2 Q 23—HRIcafi L <
V5, MOHLEE 2 (z =0 ZMOHPL O) L LT, Z Ol LD
PTOET VI vl ¢(z) LB E(z) 2RD K, £F vy v L IZER
TR &L, HEDFERIT ¢ &7 5,

Z
Ps: 0
o
X y
%1

2. BEZeh D&Y E L REHREE B ?f?677XWLWﬁ&f®OB
RD2ODHA%EHWT, BREE p BB J oot T 280 i
X (BRPRAEHD) 2 E

(RHIZDDK)



[ 3. EZrh 2 {53 2 BRI OBYE S, HRER 2, vy, 2 B X UKLt
BBt LT, RDEH)IcKINB LT 5,

E,=E,=0, E,=20cos(6m x 10% + 27z)

B ZNZNE [V/m], t s, z [m] TH 5, ZOBEDIREIE,
R, BfgmzRko &k, 7. 7777 —OEHMOMIIE

. . 0B

VXE:—E
ZHOWT, ZOBRMBKDOWHREEDt = 02D = 0 TORE
S LR RS K, B O HAE [T)=[Wb/m2] %3 T &,

(Wh=[V-s] T 3.,

(REIZDDK)



B

X2 k9ic, BERTy IR -> T 4y HIADER I i T 3 HEIRIC
E‘z)l_'f‘?%ﬁ@ﬁ< i<, PAMIEE ABCD ZiE <, s A, B, C. D& xy N
Ih D, ~HOEID 20 DIEHEOERTH 5, bl BC [ & DA D
BTy Bl TR ERTH 225, ABME CD MBI Z 2N o2 H
’%ﬂ:@w (z>0)IcH B MTH2, ABE XU CD DD o B
I (—a<l<a) B, BRUIHFEINTE D, HoIcfi<, KRS IFHFICHE
FHTEBZHDEL T, UTORWICEZ Xk, BEZROEWRE uy £33,

Z

Al 1. %@%ABCD%—I—Z SN HE SR 2 R X,

[l 2. &I I 23 I(t) = Ipsinwt (I w I ITEE) D & ) ITRHl ¢ ISR L T&
92 &, BN ABCD ICA U 2E N2 7 7 7 7 — Dk Z v
TR K, 7720, FEEROAZRB 6 Clcmhr ) & ZDkE
ZIEET 5,

(RHEIZ2DK)



Ric, &I Z2—@&Ic LT ([ = 1), PR ABCD % +o SFHISHEE 0 T
HEIIE 5,

3. BAREE ABCD I U 2 EENZERD X, 72771, FEEROEEH1B
6 Clcfh) EE2oRBENZIEET 5,
4. BAlMIE ABCD Il o kE X LAz Ro Lk, MEOEYiIE R &

T3,

5. EAAEE ABCD IZEROEREZ DO D ET S, Kt =012
—a<I(t=0)=1y<0IZHBAEEIC +x STDEB) R Z 5 2, DI
NHEMZTWEZ, t >0 TOREOHEEIDOFHHE LTIELWVWHD
Z. DUFOBIRE D 62 GER, /o, 20 BA LR Z 00 X,

(a) t =0TEZASNZHERHEITITRETIUL, | =a ZBZT
HENY 5,

(b) RE)EFTIIE T 2, | =a 2B TGHE)T 2 2 L1350,

() l=0%Z2F0ET % o BT AORERE 2179,

(@z_o%$uk?%xﬁﬁﬁ®%@%mﬂ wilt %,

(e) (a) 225 (d) DERBUCIEL W H DId vy,



I\Y
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Q1.

Q2.

A total electric charge @) is uniformly distributed over the perimeter
of a circle with radius a, and is placed in vacuum (Fig. 1). We
define the z-axis as the perpendicular to the circle, and its origin O
(z = 0) as the circle center. Find the scalar potential ¢(z) and the
electric field vector E (z) at a position P on the z-axis. We assume the
potential to be zero at infinite distance. Use the electric permittivity
of vacuum, .

Figure 1

Use the followmg two Maxwell’s equations, Wthh describe the elec-
tric field F and the magnetic flux density B in vacuum, and derive
the equation of continuity which relates the electric charge density
p to the current density J (the conservation law of charge).

E-F

€0

L oF
B =
VX (J+€Oat>

E, E, p, and J are functions of spatial coordinates and time t. ¢
and pg are the electric permittivity and magnetic permeability of
vacuum, respectively.

<

(To be continued on the next page)



Q3. Suppose that an electromagnetic wave propagating in vacuum has
electric-field components which depend on Cartesian coordinates .,
Y, z, and time ¢ as

E,=FE,=0, E,=20cos(6m x 10% + 27x).

We use the units of values, E [V/m], t [s], and x [m]. Find the
frequency, wavelength, and propagation direction of this wave. Then,

use the differential form of Faraday’s law,
. . OB
VXE=——

8 ot

to find the direction and magnitude of the magnetic flux density B
at t =0 and z = 0 of the wave. Use the unit [T]=[Wb/m?|
( [Wb]=[Vs] ) for the magnitude.

(To be continued on the next page)
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Consider a closed circuit ABCD which is placed near an infinitely-long
straight-line conducting wire in vacuum (Fig. 2). We define the y-axis
along the straight-line wire, where an electric current I flows in the +y
direction. All the points A, B, C, and D in the closed circuit are on the
xy-plane, and make a square with a side of 2a. The wires of BC and DA
of the circuit are straight and parallel to the y-axis, while those of AB
and CD are semicircular and lie on the planes parallel to the zz-plane
(z > 0). We use [ to denote the x coordinate of the midpoint of AB or CD
(—a < [ < a). Suppose all the wires are electrically insulated, and very
thin so that we can neglect their cross-sectional sizes in any case. The
magnetic permeability of vacuum is pg. Answer the following questions.

Z

Figure 2

Q1. Calculate the magnetic flux that passes through the wire loop of the
closed circuit ABCD in the +z direction.

Q2. Use the Faraday’s law of induction, and find the electromotive force
(EMF) produced in the closed circuit ABCD when the current [
varies sinusoidally with time t : I(t) = Iysinwt. (Ip and w are
constants.) We define the EMF to be positive when it induces current
in the direction of B — C.

(To be continued on the next page)



Now, suppose that the current [ is constant (I = I;), and the closed
circuit ABCD is moving in the +x direction with a velocity v.

Q3.

Q4.
Q5.

Calculate the EMF produced in the closed circuit ABCD. We define
the EMF to be positive when it induces current in the direction of
B — C.

Find the direction and magnitude of mechanical force acting on the
closed circuit ABCD. Use the electric resistance R of the circuit.
Suppose that the closed circuit ABCD has a finite mass. It is located
at —a < I(t = 0) =y < 0 at time ¢t = 0, when we give it some
kinetic momentum in the +z direction. We let it move freely with no
further external force acting on it. Determine which of the following
scenario(s) describe(s) the motion of the closed circuit ABCD at
t > 0. Explain why you think they are probable.

(a) If the momentum given at ¢ = 0 is large enough, it is possible for
the circuit to go beyond [ = a.

(b) The circuit slows down monotonically without any oscillation. It
is impossible to go beyond [ = a.

(¢) The circuit exhibits damped oscillation along the x—axis around
the center at [ = 0.

(d) The circuit oscillates permanently along the x—axis around the
center of [ = 0.

(e) None of the above scenarios are appropriate in describing the
motion.
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[A]
Answer the following questions.

Q1. Let us consider a system, which is composed of N independent two-
level-systems with energies +¢. Find the distribution function when
this system is in a thermal equilibrium contacting with a heat bath
of the temperature T'. (kg is the Boltzmann constant).

Q2. Name one fermion. Also describe one physical phenomenon related
to the Fermi statistics.

Q3. Name one boson. Also describe one physical phenomenon related to
the Bose statistics.

Q4. Elaborate on whether the phase transition of melting of ice is the
first order or not.

(To be continued on the next page)



B

Consider a thermodynamical system with temperature T', pressure p, en-
tropy .S, internal energy U and volume V. Answer the following questions.
As for a partial derivative, explicitly specify which variables are fixed.

Q1. Express the first law of thermodynamics using infinitesimal varia-
tions dS, dU, dV for the quasi-static process.

Q2. Find the Helmholtz free energy F' by using U, T and S.

Q3. Calculate the infinitesimal variation dF' and find expressions for S
and p in terms of F'.

Q4. Derive the following relation

(@), = (),

Assuming the internal energy is proportional to the volume, let us write
U = Ve where € depends only on the temperature 7.

Q5. Using the first law of thermodynamics, let us write the infinitesimal

variation dS as
dS = AdV + BdT.

Find the coefficients A and B by using ¢, p, V and T,

0
Q6. Define the entropy density by o = (9_5 and show the following
1%
relation
€E+p

0 — .
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